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The criterion for the validity of geometrical optics is quantitatively examined through a 'computer 
experiment' in the specific case of a crystal containing substantial deformations induced by a large 
thermal gradient. It is shown that the above-mentioned criterion is numerically correct. For larger 
deformations than those corresponding to the criterion the computed intensity shows that two wave 
fields appear where only one would normally have been expected, in good agreement with theoretical 
predictions. The intensity of the new wave field has been plotted as a function of deformation. 

I. Introduction 

The Ewald-Laue dynamical treatment of X-ray propa- 
gation in a triply periodic medium provides a complete 
understanding of how an X-ray wave propagates in a 
perfect crystal. The main concern of people working 
in the field at present is to give a correct account of the 
propagation of X-ray waves in crystals exhibiting de- 
fects of periodicity. For small deformations (slightly 
curved reflecting planes, for instance) different authors 
have shown that the Ewald-Laue theory can be ex- 
tended (Penning & Polder, 1961; Kato, 1963); it is 
still possible to define ray trajectories for the energy 
propagation, the only difference from the perfect crys- 
tal case being that these trajectories are curved - they 
'adjust' themselves to the curvature of the reflecting 
planes just as ordinary light rays 'adjust' themselves 
when they encounter a variation of index of refraction 
in the so-called geometrical optics treatment. 

There is experimental evidence that this extension 
of the theory for small deformations no longer holds 
in the case of large deformations. 

In the immediate vicinity of a dislocation line, for 
instance, the fine structure of images obtained by top- 
ography can no longer be interpreted along the lines 
of the previous extensions of the Ewald-Laue treat- 
ment, and one has to admit that, in the strongly-de- 
formed regions, one wave field gives rise to two wave 
fields. This phenomenon is usually referred to as the 
creation of new wave fields in highly distorted regions. 

In order to account for this, one needs to do more 
than merely to make an adjustment in the perfect-crys- 
tal treatment. Takagi (1962, 1969), and Taupin (1964) 
have produced more general theories which include the 
crystal deformations from the start. If one then calcu- 
lates the intensity distribution on the exit surface of a 
crystal containing large deformations (a dislocation 
line) on the basis of such theories, one verifies that 
there is good agreement between the calculated inten- 
sity distribution and the experimental one (Balibar & 
Authier, 1967). One of us (Balibar, 1969) has shown 
that the difference between those theories and Penning's 
and Kato's is the same as the difference which exists 

between geometrical optics and 'wave optics'. This 
means that Takagi's and Taupin's theories take into 
account diffraction effects (i.e. those effects occuring 
in wave propagation when the propagation conditions 
change abruptly), while the other theories do not. In 
other words, we may say that Takagi's and Taupin's 
theories are general enough to contain Huyghens' prin- 
ciple. According to this principle, crystal deformations 
may be viewed as resulting in secondary sources ex- 
cited by each incoming wave field and reemitting two 
wave fields inside the crystal. Therefore starting with 
one wave field, one is bound to obtain two wave fields 
while going through a region of strong distortions 
(Authier & Balibar, 1970). The so-called creation of 
new wave fields is the specific form that diffraction 
takes in the case of X-ray propagation: it will only oc- 
cur when the deformations are large enough for diffrac- 
tion effects to be observable. And it is possible to give 
a criterion (analogous to the well-known criterion for 
the validity of geometrical optics with ordinary light) 
for the appearance of such effects. 

The purpose of this paper is to study the appearance 
of new wave fields with increasing deformation, for a 
specific kind of deformation (a temperature gradient), 
by means of computer experiments and to show that 
the previously given criterion is quantitatively exact. 

II. Takagi's equations and the criterion for geometrical 
optics 

According to Takagi's (1962, 1969) theory, the crystal 
wave in a distorted crystal may be expressed as a sum 
of Bloch waves: 

D(r) = Do(r) exp ( -  2rciko. r) + D;,(r) exp ( -  2nikn. r ) ,  

k0 and k~ being two vectors of modulus k=n/2 (where 
n is the index of refraction and 2 the vacuum wave- 
length) and such that ks, = k0 +h  (where h is the recip- 
rocal-lattice vector characteristic of the considered 
reflexion); k0 can be chosen at will. Nevertheless we 
shall choose k0 so that it has the same tangential com- 
ponent as the incident wave vector. 
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D0(r) and D£(r) are then solutions of a system of lin- 
ear partial differential equations: 

aDo - inkCz~D~ (la) 
8So 

8D~ 
-- inkCZhDo + 2inkfl£D',, (lb) 

ass 

which is equivalent to the two second-order partial dif- 
ferential equations: 

8 2 O 
8SoSSh D0(r)-  2nikfl ~ D0(r) 

-}- 7~2k2CZxhx~Oo(r)=O (2a) 

92 O 
8soOs-------h D~(r)-2nikfl;, ~ o  D;,(r) 

fl~)D~(r) =0  (26) + (n2kzC2xhX~- 2nik 

where So and sh are coordinates along the refracted and 
reflected directions respectively; X,, Z~ are the Fourier 
coefficients of the dielectric susceptibility X for a per- 
fect crystal of the type under consideration; and C= 1 
or cos 20 is the polarization factor. 

The crystal deformation appears in equation (2) 
through the coefficient fl;,(r) 

1 8 
fl~(r)=fln k ass [h. n(r)] (3) 

where n(r) is the displacement of an atom located at 
r. In this equation, flh is a constant coefficient, the value 
of which depends on the initial choice for k0. With our 
choice of k0 

1 1) f l , = - [ A O s i n 2 0 - - 2 - Z o ( ~ -  ] ,  (4) 

AO being the departure of the incident wave from the 
exact Bragg law and 

r0= cos (n, So) 
~ . =  cos (n, Sh) 

(where n is normal to the crystal entrance surface). 
Any partial differential equation such as (2a) or (2b) 

cannot be solved unless some appropriate initial con- 
ditions are given. These are provided by the physics of 
the problem; i.e., in this case, the amplitude distribut- 
ion of the incident wave on the enentrance surface and 
the gradient of this amplitude (Cauchy conditions). 
Examination of (2) makes it clear that the solutions of 
such equations will depend on/~(r)  and 8fl£(r)/OSo. 

It has been shown elsewhere (Authier & Balibar, 
1970) that geometrical optics (i.e. the neglect of dif- 
fraction effects) is a valid approximation as long as 

-2n ik  -~o fl~ <nZkZCZz*Z~ (5) 

in the last term of equation (2b). The Penning & Polder 
results are then recovered - the energy is propagated 
in beams with curved trajectories. To each wave field 
there corresponds a trajectory and a given wave field 
can be followed throughout the crystal. 

On the other hand, when condition (5) is not ful- 
filled, integration of (2) becomes more complicated and 
does not lead to the Penning & Polder (or Kato) re- 
sults. It is then necessary to use the mathematical 
theory of distributions. As already hinted in the intro- 
duction, deformations can then be treated mathemati- 
cally as equivalent distributions of ideal sources which 
are responsible for the creation of new wave fields. 
Therefore a wave field of type 1 gives rise to two wave 
fields, of types 1 and 2 respectively. Condition (5) gives 
the criterion for the validity of the geometrical optics; 
it states that the rate of change of fl£ or, as can be seen 
[from (3)], the second derivative of the component of 
the displacement u(r) must be less than a certain con- 
stant value, a value essentially determined by the re- 
flexion considered. 

/ 

So 
Sh 

I ELEM 

Fig. 1. Principle of the computation. The amplitudes of the 
wave fields at the point A depend on their values at points 
B and C. 

HI. Computer experiments 

Takagi's equations, in the form of equation (1), can 
be numerically integrated on a computer. For this, we 
have used a new version of a program written, some 
years ago, by Authier, Malgrange & Tournarie (1968). 
The general technique of integration is described at 
length in the above reference. Suffice it to say here 
that the crystal is divided into elementary slabs parallel 
to the entrance surface and that the values of Do and 
D~ at a given point A are obtained from their values at 
B and C, two points belonging to the preceeding slab 
and such that BA and CA are parallel to so and s, 
respectively (Fig. 1): 

[DofB) 
[D0(A)] /D;,(B) 
[D~(A) ] = M [Do(C) 

LD;,(C) , 
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where M is a 2 x 4 matrix with coefficients depending 
on the nature of the crystal and its local deformations. 

The deformations that have been considered in this 
work are those induced by a constant thermal gradient 
parallel to the entrance surface. This gradient produces 
a curvature of the atomic planes perpendicular to the 
entrance surface. These planes are chosen as reflecting 
planes; therefore the reflexion is symmetric. 

As already mentioned [cf. equation (3)], the impor- 
tant parameter for our purpose is the rate of change 
of fl~. To facilitate comparison with other studies, we 
shall use here the same parameter as that used by Pen- 
ning, 

2 32 
fl= C Z~hZ~ 3So3Sh (h. u).  (6) 

This fl parameter is of opposite sign to that of Kato. 
This should not be confused with the fl~ appearing in 
Takagi's notations. These quantities are related through 

~ f l o = f l c v ~ z r ,  cos (7) 0. 

In our case (the symmetrical lane case), fl reduces to 

f l -  0,to~2 [ n .  V.0~T] (8) 
Zh 

where n is normal to the entrance surface and a is the 
expansion coefficient. 

(a) Small temperature gradient: ray trajectories 
Let us first recall some theoretical results concern- 

ing the ray trajectories in the case of a small tempera- 
ture gradient. Penning & Polder have shown, and this 
has been checked by previous computer experiments 
(Authier et al., 1968), that for small values of fl and 
for a symmetric case (?0=Th), the trajectories of the 
wave fields induced in the crystal by an incident vac- 
uum plane wave are portions of hyperbolas. 

Let x and z be two coordinates parallel and perpen- 
dicular respectively to the entrance surface, the origin 
being located at the intersection of the incident beam 
and the crystal entrance surface. The equation of the 
trajectories is then: 

-+ v i ) '=  1 

where rh is a parameter which is related to the depar- 
ture of the incident vacuum plane wave (AO)i from 
Bragg's law: 

(AO)i sin 20 
r/l = Zl/~hX~ ' (9) 

The + and - signs correspond to wave fields 1 and 2 
respectively. For different values of fl, these curves 
form a set of hyperbolas with asymptotes parallel to 
So and sh; the curvature of each hyperbola at its top is 

determined by the value of fl and increases with in- 
creasing ft. 

For a given value offl, any point on the correspond- 
ing hyperbola is characterized by the value of the par- 
ameter 

AO sin 20 

1/L  ' 

where AO represents the departure of the considered 
wave field from the Bragg angle at the point considered. 
The parameter r/is related to r/i, fl and z (depth inside 
the crystal as measured from the entrance surface) 
through 

ll = rh - flz . (I0) 

The apex of the hyperbola corresponds to r/=0. Let 
us note that, for a given fl, the value of rh determines 
which portion of the corresponding hyperbola is the 
wave-field trajectory (Fig. 2). 

(b) Large temperature gradient: creation of  new wave 
fields 

For sufficiently large values of 3p'~/OSo [i.e. for large 
values of the parameter fl in (8)], diffraction effects ap- 

p~O 

X 

Wave field 1 : 

Wave field 2 . . . . . . .  

p < o  

z 

X 

I " I 

X 

)<<.. 

Fig. 2. Trajectories of the wave fields in a crystal slightly de- 
formed by a thermal gradient. The different paths depend 
on the values of the deformation and on the departure of 
the incident wave at the entrance surface from the Bragg 
angle. 
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pear. From (5) and (7), we may conclude that this is 
bound to occur for 

fl > rc/2A (11) 

where the Pendell6sung wavelength A equals 

cos  0/Cl /xkx~ • 

r ,  
B A 

/ 

Fig. 3. Trajectories of the beams for a large deformation, 
where B is the new wave field and A the curved wave field. 
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Fig. 4. Calculated intensity at different depths inside the crystal 
corresponding to: p= 20 and rh = 80. 

In our computer experiments we used 2 = 0.709 A, 0 =  
10 ° 40', C =  1 and [Zh[=2.10 -6. These values corres- 
pond to reflexion 220 for a silicon crystal with Mo Kct 
radiation. The corresponding value of A is 34.9 ltm. 
We then expect to find the creation of new wave fields. 
In order to make this phenomenon most evident, we 
select one of the two 'normal '  wave fields induced at 
the entrance surface by a vacuum plane wave charac- 
terized by a given value of r h [by 'normal '  we mean 
those wave fields which, for the r/i value considered, 
would propagate according to geometrical optics; in 
this case they would correspond to the hyperbolic tra- 
jectories (9)]. This is most easily achieved by choosing 
a large value of r/l, since consideration of the intensity 
formulae, as given by Malgrange (1967), shows that 
for such an rh the intensity of one of the wave fields 
is nearly equal to zero. 

Evidence of the creation of new wave fields for large 
values offl will therefore correspond to the observation 
of two wave fields at the exit surface while for small 
values of fl we would observe only one wave field 
(Fig. 3). 

As a matter of fact, closer examination of criterion 
(5) shows that diffraction effects are more important 
in the regions where the curvature of the 'normal '  tra- 
jectory is large. In our case, the creation of new wave 
fields is expected to be most important when the apex 
of the hyperbola which represents the trajectory of the 
'normal '  wave field under consideration lies inside the 
crystal. This apex corresponds to a zero value of the 
parameter rl=~h-flz. Therefore for a given value of r ,  
choosing r h such that the apex of the hyperbola be 
midway between the entrance and the exit surface, rep- 
resents a good compromise between the two condi- 
tions imposed on rh. 

IV. Results 

Fig. 4 shows the results obtained for f l=20 per 100/zm 
and ql = 80. Under these conditions r /=0  at a depth 
equal to 400/zm. Geometrical-optics results would give 
a curved wave field which, far from its apex, reduces 
to a reflected wave only. Fig. 4 shows that a new wave 
field appears in the zone where r/ is nearly equal to 
zero. As soon as we leave this particular zone, this 
wave field reduces to the refracted wave only. 

In Fig. 5 we have plotted the relative intensity of 
the newly created wave field as a function of r ,  expres- 
sed in unit (100/zm) -1. The intensity of the extra wave 
field equals 10% of the incident intensity as soon as 
fl=12-5 that is, for fl~-3(rc/2A) [see equation (11)]. 
From this we may conclude that criterion (5) (which 
was established on theoretical basis) is not only quali- 
tatively correct but quantitatively exact. 

Fig. 6 is a plot of log I2/Io (where 12 is the intensity 
of the newly created wave field and I0 is the intensity 
of the incoming beam) as a function of l/ft. This curve 
is a straight line with a slope of - t, which can be eval- 
uated as t _ 2 9  [with a choice of unit of (100 pm)- l ] .  
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We conclude that I2 varies exponentially with 1/,8: 

& 
- -  =exp ( - t / f l ) .  
/o 

This conclusion can be related to some of Penning's 
(1966) theoretical results. Penning has shown that, in 
the specific case of a local reciprocal-lattice vector de- 
pending on only one coordinate z (depth in the crystal), 
the appearance of a new wave field is to be expected 
when the crystal deformations become very large. Pen- 
ning also stated that this new wave field should appear 
in the region where the curvature of the ray trajectory 
is at its maximum and that, far from this region, the 
new wave field should be made up of only a transmitted 
wave of intensity 12 such that 12/lo = exp ( - 2 S ) ,  where 
S is a parameter inversely proportional to our ft. 

Here we have the same kind of dependence of the 
intensity of the new wave field on deformation. Note 
that our result is more general than Penning's, since 
the local reciprocal-lattice vector depends not only on 
z but also on x. This exponential dependence of 12 can 
be easily understood with reference to the results of 
the kinematical theory. (It is clear that for very large 
deformations the two theories should give the same 
results. As a matter of fact, for very large values of fl 
[e.g. here for f l= 150 units (100/zm) -1] 

&/Io= 1-tiff, 
which shows that the normal wave field intensity I~ is 
equal to t/ft. Since we have shown experimentally that 
this wave field is a reflected wave only, this means that 
the intensity of the reflected beam is inversely propor- 
tional to ft. This result can be easily understood. The 
reflected intensity is kept at a non-vanishing level only 
for departures from the Bragg law of the order of the 
width of the rocking curve, which means Ar/_~2, cor- 
responding [see (10)] to a depth Az in the crystal of 
order _ 2/fl. Owing to the strong curvature of the wave 
fields, the corresponding wave packet is made up of a 
large spectrum of wave vectors and therefore of r/val- 
ues. The intensity obtained is therefore an integrated 
intensity, which is, in the kinematical case, proportion- 
al to the volume where the reflexion occurs, that is 
in our case to Az~_21fl. The kinematical reflecting 
power is thus inversely proportional to fl and the kine- 
matical results are thus retrieved for large values of ft. 

From this result, we may infer that the direct image 
of a crystal imperfection, which is often interpreted as 
a kinematical effect, can in fact be taken into account 
through Takagi's equation. 

As a conclusion we may say that the results pre- 
sented here establish a bridge between the kinematical 
and the dynamical theories. 

idlo 

1oo 7, 

f 
/ 20 40" p (rrf2A} 

Fig. 5. Ratio of the intensity of the new wave field to the 
incident intensity as a function of ft. 
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Fig. 6. Logarithm of the ratio of the new wave field to the in- 
cident intensity as a function of 1/fl (100 pro). 
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